

SNOLAB operational model

- For current facilities
 - Traditional NP "free-at-the-point-of-access" model
 - Canadian support for baseline operations of the facility, including life safety, power, ventilation, materials handling, compressed air, UPW, IT and networking
 - Experiments charged for additional 'non-standard' costs: significant transport, high power usage, significant gas/nitrogen
 - Experiments responsible for clean-room beyond C2000
 - Infrastructure negotiated: capital expected from experiments
- Based on current planned programme
 - If additional experiments incorporated immediately then additional installation and construction support would be required through the experiment for infrastructure

Facility Access

- Experiment life-cycle mapping
 - Provides visible pathways for review and 'gateway' approvals
 - Development of 'project implementation plans'
- Programme oversight by international EAC
 - Full bi-annual programme review operational and requests
 - Advisory to SNOLAB Director
 - Input from project implementation plans
- Facility access merit based
 - Letter of Interest, reviewed by EAC
 - International facility, as per initial awarding mechanism
 - Demonstrated by COUPP, miniCLEAN, SuperCDMS, DAMIC

Experiment Life-cycle Map

- Definition of Gateway points for approval to move to next phase
 - Conception
 - Feasibility
 - Execution
 - Operation
 - Close-out

LEGEND of PROJECT PHASES:

Updated Project

Decommissioning

Plan and Propone

- A Conception B - Feasibility
- C Development
- D Execution
- E Operation F - Closing
 - SNOLAB EXPERIMENT LIFE CYCLE (2011-09-22) REV 05

& Proponent

Decommissioning

Review

Project Close Out

END

Additional Development - Experiments

- Existing Space will become available as projects complete
 - "J" drift anticipated for R&D/rapid deployment at all times
 - Ladder labs:
 - SuperCDMS area committed; COUPP/PICASSO for next five years
 - Cube Hall: argon programme for next five years
 - SNO+ cavity: occupation over next decade
 - Cryopit: process underway to select project:
 - presume commit in 2015; for a decade
 - From 2020 Anticipate new experiments in Cryopit and Cube Hall
- Planned projects
 - No formal commitment made yet, but several projects presented to Cryopit review in 2011
 - DEAP-CLEAN, EXO, GeoDM, COUPP, PICASSO, 1TGe
 - This process continues this year

Additional Development - Experiments

- Selection process for experiments as now
 - Purely merit based
 - Fully international
 - U.S. projects (as now) extremely welcomed
- Scope of programme
 - Anticipated programme revolves around G2 and beyond for DM; $0\nu\beta\beta$
 - Additional science strands in progress: geotech/mining; subsurface life
 - No requests for long baseline neutrino targets, nor proton decay
 - These are not excluded *per se*
 - Design work has not been completed for megatonne detectors

Additional development - Facilities

- Is there scope for additional development at SNOLAB, either 6800' or elsewhere?
 - Yes, but the current strategic plan assumed no immediate development for the next 4 years at least
 - This does not preclude such happening; just that funding requires dialogue with all interested parties
 - Vale have already indicated willingness to discuss
- Non-technical issues
 - Funding sources and agreements
 - Operational model agreements
 - Agreement with Vale on development scope

Technical Requirements

- Where?

- 6800' exploits current infrastructure, but requires management of development not to impact current facility and projects
- Other level? Access to lower levels possible, support infrastructure in place from Vale
- Further geotechnical studies needed to define capability. Larger cavities had not been investigated and modelled in current facility, but rock mass is well understood and stable hanging wall
- Connection to current clean room
 - Requires separation and will impact current ops
 - SNOLAB was developed with SNO operational
 - Lost time ~5 days, most planned power transitions
- Ventilation and power upgrades?
 - Separation of facilities incur additional costs

Additional development

- Timeline?

- Driven by experiment need when are these cavities needed?
- Components required: negotiation, geo-tech, design, excavation, outfitting
- Historical: Overall SNOLAB development was six years from start to completion, but experiment deployment during this time occurred.
 - 4 years excavation, 2 years outfitting concurrent, 2 years to clean room concurrent

- Cost?

- Historical validated costs for SNOLAB experimental volume (i.e. to clean room status): ~\$3k/m3
- Scaling may not be linear if constraints imposed by access through shaft or total underground workforce, or through economy of volumetric scaling

When is 'deep enough'?

- Current generation experiments well served by current facilities and backgrounds achievable
- Additional shielding available from c.r's
 - Three orders magnitude suppression from current deepest labs
 - Limited by muons from neutrino production
- If 3G++ systems require greater depth then challenge for facilities
 - But not unsurmountable

SNOLAB Strategic Mission

- Developed within Strategic Plan 2012-2017
- Enable world-class science to be performed at SNOLAB by national and international experimental collaborations, providing scientific underpin, technical skills and knowledge, generating and developing international connections, and through development of a strong reputation; SNOLAB will also provide risk mitigation, reacting quickly to challenges/crises to enable the efficient execution of the scientific programme
- Spearhead world-class science at SNOLAB through its own research group as part of the international and national community, developing synergies with other groups worldwide;
- Catalyse world-class science at SNOLAB by providing a sought after collaborator in its own right and through providing transformational opportunities for collaboration and knowledge exchange to other groups through workshops, external connections and local interactions;
- Promote world-class science and societal benefits through a strong public and professional outreach programme, and through technical knowledge development and transfer;
- Inspire the next generation of innovators through strong educational outreach, knowledge transfer and the training of highly qualified personnel;

SNOLAB Space Summary

Area	Dimensions	Area	Volume
SNO Cavern	24m (dia) x 30m(h)	250m ²	9,400 m ³
Ladder Labs	32m(l)x6m(w)x5.5m(h)	190m ²	960 m ³
	23m(l)x7.5m(w)x7.6m(h)	170m ²	1,100 m ³
Cube Hall	18.3m(l)x15m(w) x 19.7m(h)	280m ²	5,600 m ³
Cryopit	15m(dia) x 19.7m(h)	180m ²	3,900 m ³

•		Excavation		Clean Room		Laboratory	
		Area (m2)	Volume (m3)	Area (m2)	Volume (m3)	Area (m2)	Volume (m3)
	Original SNO Areas	1860	16500	1130	13300	750	11700
•	+Phase I	6070	38750	3900	29750	2430	23700
•	+Phase II	7220	46650	4940	37250	3060	29550

The SNOLAB Science Programme

Experiment	Solar v	0νββ	Dark Matter	Supernova v	Geo v	Other	Space allocated	Status
SNO+	٧	٧		٧	٧		SNO Cavern	Construction
PICASSO-III			٧				Ladders Labs	Operational
DEAP-1			٧				J'-Drift	Operational
DEAP-3600			٧				Cube Hall	Construction
MiniCLEAN			٧				Cube Hall	Construction
HALO				٧			Halo Stub	Operational
PUPS						Seismicity	Various	Completed
SuperCDMS			٧				Ladder Labs	Request
EXO-gas		٧					Ladder Labs	Request
COUPP			٧				Ladder Labs	Operational
DAMIC			٧				Ladder Labs	Operational
COBRA		٧					Ladder Labs	Request

Underground Facilities

SNO Area: 1860 m²

SNOLAB Area: 5360 m²

Facility Services

Ventilation

- 100,000 cfm mine air flow to laboratory, mainly used for cooling of chillers
- 10% make-up air fed in lab 13 air handling units in lab
- Maintains pressure differentials for cleanliness
- 10 air changes/hour nominal; 5 air changes/hour in cavities

Cooling

- 1 MW cooling capability from 5 cooled water units delivering 10°C water to the laboratory. 100kW from rock in steady state (42°C base)
- 20% utilised at present with minimal expt. load

Power distribution

- 3-phase 13.8 kV fed to facility
- Stepped to 3-phase 600V (total 2000 kVA)
- 150kW (++?) Generator planned

Water

- Utility water derived from mine water
- UPW as a general capability for experiments (150l/min 183 k Ω m)
- Waste disposal through mine systems (except sewage STP)

Experiment design considerations

Transport

- Cage size: 3.7 m x 1.5 m x 2.6 m, slinging for larger objects
- Seismic mitigation
 - Design criteria now 4.3 Nuttli, following 4.1 event in SNO
 - Forcing function applied to experiment designs maximum velocity 800 mm/s at 5 Hz

Pressure

- Air pressure is 25% higher than atmospheric
- Excursions during ventilation changes and crown blasts (up to 3% seen)
 - managed through baffling and blast doors
 - design pressure for experiments up to 20 psi
- Radon (~130 Bq/m3)
 - No direct radon suppression in air intakes
 - Cover gas used (LN2 boil-off) on detector systems
 - Ventilation (make-up vs recirculation) minimises radon emission from walls

H2S

- Long term exposure to mine air showed deposition of CuS on SNO electronics
- Suppression is now installed in the air handling units

SNOLAB Funding

- Capital investment was \$85M in SNO and \$65M in SNOLAB; Operations are ~\$8M/year cash; SNOLAB experiments derive their own additional funding outside this capital envelope
- Additional capital requires new proposals (e.g. NOHFC underway)
- Support for facility operations have been derived from Provincial,
 Federal, University and industrial partners; Significant in-kind support has been provided by Vale

- SNOLAB operational funding secured to 2017, does not include research support (i.e. experiment capital, students) and requires mid-term reviews

of science:

Funding Source	Period	Amount (\$k)
CFI MSI (Federal)	FY2012/13 - FY2016/17	22,600
MEDI (Ontario)	FY2013/14 - FY2016/17	17,100
MEDI ORF-RE (Ontario)	FY2007/08 - FY2012/13	12,600
Vale in-kind support	Annual	8,000
University (ineligibles)	FY2012/13	360

SNOLAB Core Competencies

- Total staff complement is ~60
- Operations and maintenance account for the majority of these
 - Significant 'impulse' of projects in deployment at the moment
 - Resources stretched
- Research Scientists (6 staff)
 - Act as full collaborators, TRIUMF and IPP as the model
 - Provide interface between projects and SNOLAB
- Engineering staff (3 staff)
 - Focus is on the SNOLAB specific components (seismic, depth, etc)
 - Provides support during initial design phase of projects
- Installation groups (6 staff)
 - Take lead in deployment of projects

Current OrgChart

Support for Experiments

- Provides technical and administrative support to SNOLAB experiments:
 - design, construction, operations
 - background assay, science support
 - materials transport, cleaning, EH&S, training, procurement
- The Research team members can act as collaborators on experiments, providing operational and scientific support
- Infrastructure support is provided through development of shielding systems, mechanical supports, access, EH&S, etc.
- Services provided as standard to experiments includes life safety, power, ventilation, compressed air, ultra-pure water, liquid nitrogen, IT and networking
- Vale provide materials transport through the shaft, maintain the safety of the infrastructure, regulatory checks, etc.
 - SNOLAB currently has ~50 people underground regularly, 3 dedicated cages
 - Cages integrated into Vale operations effectively (eg SNO D2O movement)